

MOTHER TERESA WOMEN'S UNIVERSITY KODAIKANAL-624 101

DEPARTMENT OF BIOTECHNOLOGY

M.Sc. BIOCHEMISTRY Curriculum Framework, Syllabus, and Regulations (Based on TANSCHE Syllabus under choice Based Credit System – CBCS)

(For the candidates to be admitted from the Academic Year 2023-2024)

M.Sc. BIOCHEMISTRY

1. About the Programme:

M.Sc. Biochemistry is a 2-year Postgraduate programme that is divided into 4 semesters. The programme offers in-depth knowledge of biological-chemistry with regard to Pharmaceutical Biochemistry, Immunology, Clinical biochemistry and Enzymology. The main aim of the program is to make students understand the dynamics and mechanism of the biological activities taking place both in Microbes, Plants and Animals. M.Sc. Biochemistry degrees provide job opportunities for the eligible applicants to work as Research Fellow, Analytical Chemist, Pharma Associate, Clinical Biochemist, Food Safety Analyst, etc.

Programme:	M.Sc BIOCHEMISTRY					
Programme	P23BC					
Code:						
Duration:	02 years					
Programme	PO1. To make students understand the importance of biochemistry as a					
Outcomes:	subject that deals with life processes, as well as the concepts, theories and					
	experimental approaches followed in biochemistry, in order to pursue a					
	research career, either in an industry or academic setting.					
	PO2. To develop analytical and problem-solving skills					
	PO3 . To create an awareness among the students on the interconnection					
	between the interdisciplinary areas of biochemistry.					
	PO4. To give the necessary practical skills required for					
	biochemical techniques and analysis.					
	PO5 . To develop a communication and writing skills in students.					
	PO6. To develop leadership and teamwork skills					
	PO7 . To emphasize the importance of good academic and work ethics and their social implications.					
	PO8 . To emphasize the importance of continuous learning and to promote lifelong learning and career development.					
	PO9 . To teach students how to retrieve information from a variety of sources, including libraries, databases and the internet.					
	PO10. To teach students to identify, design and execute a					
	research problem, analyze and interpret data and learn time and					

	resource management.
Programme Specific	Programme Specific Outcomes (PSO)
Outcomes:	On successful completion of this course, students should be able to:
	PSO1. Understand the principles and methods of various techniques in Biochemistry, Immunology, Microbiology, Enzyme kinetics and Molecular Cell Biology. Based on their understanding, the students may would be able to design and execute experiments during their final semester project, and further research programs.
	PSO2. Insight on the structure-function relationship of biomolecules, their synthesis and breakdown, the regulation of these pathways, and their importance in terms of clinical correlation. Students will also acquire knowledge of the principles of nutritional biochemistry and also understand diseases and their prevention.
	PSO3 . To understand the concepts of cellular signal transduction pathways and the association of aberrant signal processes with various diseases. Acquire insight into the immune system and its responses, and use this knowledge in the processes of immunization, vaccine development, transplantation and organ rejection.
	PSO4. To visualize and appreciate the central dogma of molecular biology, regulation of gene expression, molecular techniques used in rDNA technology, gene knock-out and knock-in techniques.
	PSO5. To create awareness in students about the importance of good laboratory practices and the importance of ethical and social responsibilities of a researcher. Teach them how to review literature and the art of designing and executing experiments independently and also work as a part of a team.

Eligibility:

A graduate who possess Degree in any one of the Life Sciences (Biotechnology / Botany / Zoology / Microbiology / Biochemistry / Environmental Science / Food Science and Herbal Sciences) and other relevant Subjects. Candidate should have secured at least 55% in the above subject from any recognized university.

Methods of Evaluation							
	Continuous Internal Assessment Test						
Internal	Assignments	25 Morks					
Evaluation	Seminars	25 WILLINS					
	Attendance and Class Participation						
External Evaluation	End Semester Examination75 Marks						
	Total	100 Marks					
Methods of Assessment							
Recall(K1)	Simple definitions, MCQ, Recall steps, Concept definitions						
Understand/	MCQ, True/False, Short essays, Concept explanations, Short summary or						
Comprehend(K2)	overview						
Application (K3)	Suggest idea/concept with examples, Suggest formulae, Solve problems, Observe, Explain						
Analyze(K4)	Problem-solving questions, Finish a procedure in many steps, Differentiate						
	Between various ideas, Map knowledge						
Evaluate(K5)	Longer essay/Evaluation essay, Critiqueor justify with pros and cons						
Create(K6)	Check knowledge in specific or off beat situations, Discus	ssion, Debating or					
Create(K0)	Presentations						

• Question paper pattern for External examination for Core and Elective papers:

WRITTEN EXAMINATION QUESTION PAPER PATTERN

Theory Paper (Bloom's Taxonomy based)

Intended Learning Skills	Maximum 75 Marks Passing Minimum: 50% Duration: Three Hours				
Memory Recall/Example/ Counter Example / Knowledge	Part–A (10x2=20Marks) Answer ALL questions Each Question carries 2 marks				
about the Concepts/Understanding	Two questions from each Unit				
	Question 1 toQuestion10				
	Part–B (5x5=25Marks) Answer				
	ALL questions				
	Each question carries 5 Marks				
Descriptions/Application	Either - or Type				
(problems)	Both parts of each question from the same Unit				
	Question 11 (a) or 11(b)				
	to				
	Question 15(a) or 15(b)				

	Part-C (3x 10 = 30 Marks) Answer any THREE questions Each question carries 10 Marks				
Analysis/Synthesis / Evaluation	There shall be FIVE questions covering all the five units				
	Question 16 to Question 20				

*Minimum credits required to pass:91

Project Report

A student should select a topic for the Project Work at the end of the fifth semester itself and submit the Project Report at the end of the sixth semester. The Project Report shall not exceed 75typed pages in Times New Roman font with 1.5linespace.

Project Evaluation

There is a Viva Voce Examination for Project Work. The Guide and an External Examiner shall evaluate and conduct the Viva Voce Examination. The Project Work carries 100 marks (Internal: 25Marks; External (Viva):75 Marks).

Conversion of Marks to Grade Points and Letter Grade (Performance in a Course/Paper)

Range of	Grade Points	Grade	Description
Marks			
90-100	9.0 -10.0	0	Outstanding
80-89	8.0 - 8.9	D+	Excellent
75-79	7.5 –7.9	D	Distinction
70-74	7.0 -7.4	A+	VeryGood
60-69	6.0 –6.9	А	Good
50-59	5.0 - 5.9	В	Average

Attendance

Students must have earned 75% of attendance in each course for appearing for the examination. Students with 71% to 74% of attendance must apply for condonation in the prescribed form with prescribed fee. Students with 65% to 70% of attendance must apply for condonation in the prescribed form with the prescribed fee along with the Medical Certificate. Students with attendance lesser than 65% are not eligible to appear for the examination and they shall re-do the course with the prior permission of the Head of the Department, Principal and the Registrar of the University.

Maternity Leave

The student who avails maternity leave may be considered to appear for the examination with the approval of Staff i/c, Head of the Department, Controller of Examination and the Registrar.

Any Other Information

In addition to the above-mentioned regulations, any other common regulations pertaining to the UG Programmes are also applicable for this Programme.

MOTHER TERESA WOMEN'S UNIVERSITY,KODAIKANAL M.Sc. BIOCHEMISTRY SYLLABUS 2023-2024

SEMESTER-I								
Course Code	Course Title	Hours		'S	Credits	CIA	ESE	Total
		L	Т	Р				
P23BCT11	Core-1 Basics of	4	3		5	25	75	100
	Biochemistry							
P23BCT12	Core-2 Biochemical and	4	3		5	25	75	100
	Molecular Biology							
	Techniques							
P23BCP11	Core – 3- Practical -			6	4	25	75	100
	Biomolecules And							
	Biochemical Techniques							
P23BCE1A/	Elective -1: A - Energy and	3 2			3	25	75	100
P23BCE1B	Drug metabolism / B -							
	Biophysical Methodology							
P23WSG11	Generic Course I – Women	3	2		3	25	75	100
	Empowerment							
	Total		30		20	-	-	500
	SEME	STE	R-II			I		
P23BCT23	Core-4: Enzymology	3	3		5	25	75	100
P23BCT24	Core-5: Clinical Biochemistry	3	3		5	25	75	100
P23BCP22	Core – 6: Practical -			6	4	25	75	100
	Enzymology and Clinical							
	Biochemistry							
P23BCE2A /	Elective-2: A - Molecular	2	2		3	25	75	100
P23BCE2B	Basis of Diseases and Therapeutic Strategies /							
	B - Bioplastics							
P23BCS21	SEC I (NME)-	2	2		2	25	75	100
	Phytochemistry							
P23CSG22	Generic Course II: Cyber	2	2		3	25	75	100
	Security							
	Total	30		·	22	-	-	600

Course	CORE PAPER I
Title of theCourse:	P23BCT11 - BASICS OF BIOCHEMISTRY
Credits:	5
Pre-requisites, ifany:	Basic Knowledge of Biochemistry and Biomolecules
Course Objectives	The main objectives of this course are to:
	1. Students will be introduced to the structure of biomolecules.
	2. The significance of carbohydrates in biological processes will
	be understood.
	3. The structure, properties and biological significance of lipids
	in the biological system will be studied
	4. Students will learn about the concepts of protein structure and
	their significance in biological processes and creatively
	comprehend the role of membrane components with their
	biological significance.
	5. Students will gain knowledge about the structures and
	functional roles of nucleic acids in the biological system
	On successful completion of the course, the students should be
	able to:
Course Outcomes	CO1: Explain the chemical structure and functions of
	carbohydrates.(K1, K2)
	CO2: Using the knowledge of lipid structure and function,
	explain how it plays a role in Signalling pathways (K3, K4)
	CO3: Describe the various levels of structural organisation of
	proteins and the role of proteins in biological system (K4, K5)
	CO4: Apply the knowledge of proteins in cell-cellinteractions
	(K3, K4)
	CO5: Applying the knowledge of nucleic acid sequencing in
	researchand diagnosis (K2, K3, K4)

SEMESTER-I

Carbohydrates- Classification, structure (configurations and conformations, anomeric forms),

Units

Ι	function and properties of monosaccharides, mutarotation, Disaccharides and
	oligosaccharides with suitable examples. Polysaccharides - Homopolysaccharides (starch,
	glycogen, cellulose, inulin, dextrin, agar, pectin, dextran). Heteropolysaccharides -
	Glycosaminoglycans- source, structure, functions of hyaluronic acid, chondroitin sulphates,
	heparin, keratan sulphate. Glycoproteins - proteoglycans. O- Linked and N-linked
	glycoproteins. Biological significance of glycan. Blood group polysaccharides. Bacterial cell
	wall (peptidoglycans, teichoic acid) and plant cell wall carbohydrates.
	Lipids - Classification of lipids, structure, properties and functions of fatty acids,
II	triacylglycerols, phospholipids, glycolipids, sphingolipids and steroids - Biological
	importance. Eicosanoids- classification, structure and functions of prostaglandins,
	thromboxanes, leukotrienes. Lipoproteins – Classification, structure, transport (endogenous
	and exogenous Pathway) and their biological significance.
	Overview of Aminoacids - classification, structure and properties of amino acids,
III	Biological role. Non Protein aminoacids and their biological significance .Proteins -
	classification based on composition, structure and functions. Primary, secondary, super
	secondary (motifs) (Helix-turn -helix, helix-loop-helix, Beta-alpha-beta motif, Rosemann
	Rossmann fold, Greek key), tertiary and quaternary structure of proteins. Structural
	characteristics of collagen and hemoglobin. Determination of amino acid sequence.
	Chemical synthesis of a peptide, Forces involved in stabilization of protein structure.
	Ramachandran plot. Folding of proteins. Molecular chaperons - Hsp 70 and Hsp 90 -
	biological role.
	Membrane Proteins - Types and their significance. Cytoskeleton proteins - actin, tubulin,
IV	intermediate filaments. Biological role of cytoskeletal proteins. Membrane structure-
	fluid mosaic model
	Nucleic acids – types and forms (A, B, C and Z) of DNA. Watson-Crick model - Primary,
V	secondary and tertiary structures of DNA. Triple helix and quadruplex DNA. Mitochondrial
	and chloroplast DNA. DNA supercoiling (calculation of Writhe, linking and twist number).
	Determination of nucleic acid sequences by Maxam Gilbert and Sanger's methods. Forces
	stabilizing nucleic acid structure. Properties of DNA and RNA. C-value, C-value paradox,
	Cot curve. Structure and role of nucleotides in cellular communications. Major and minor
	classes of RNA, their structure and biological functions.
Reading List	1. https://bio.libretexts.org/Bookshelves/Biochemistry/Book%3A_Bioc
(Print and	hemistry_Online_(Jakubowski)

Online)	2. https://www.thermofisher.com/in/en/home/life-science/protein-biology/protein-biology-							
	learning-center/protein-biology-resource- library/pierce-protein-methods/protein-							
	glycosylation.html							
	3. https://ocw.mit.edu/courses/biology/7-88j-protein-folding-and- human-disease-spring-							
	2015/study-materials/							
	4. https://www.open.edu/openlearn/science-maths- technology/science/biology/nucleic-							
	acids-and-chromatin/content-section- 3.4.2							
	5. https://www.genome.gov/genetics-glossary/Cell-Membrane							
	https://nptel.ac.in/content/storage2/courses/102103012/pdf/mod3.pdf							
Self-Study	1. Classification of Sugars							
	2. Nutritional classification of fatty acids							
Recommended	1. David L.Nelson and Michael M.Cox (2012) LehningerPrinciples of Biochemistry (6th							
Texts	ed) W.H. Freeman.							
	2. Voet.D & Voet. J.G (2010) Biochemistry, (4th ed), JohnWiley & Sons, Inc.							
	3. Metzler D.E (2003). The chemical reactions of livingcells (2nd ed), Academic Press.							
	4. Zubay G.L (1999) Biochemistry, (4th ed), Mc Grew-Hill.							
	5. Lubert Stryer (2010) Biochemistry, (7th ed), W.H.Freeman							
	6. Satyanarayan, U (2014) Biochemistry (4th ed), ArunabhaSen Books & Allied (P) Ltd,							
	Kolkata.							

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	S	L	М	S	М	Μ	Μ	S	М	Μ
CO 2	S	Μ	L	S	М	Μ	Μ	S	Μ	Μ
CO 3	S	Μ	Μ	S	S	Μ	L	S	Μ	М
CO 4	S	М	Μ	S	М	Μ	М	S	М	Μ
CO 5	S	S	Μ	S	S	Μ	Μ	S	Μ	Μ

S-Strong M-Medium L-Low

Course	CORE PAPER II					
Title of the	P23BCT12 - BIOCHEMICAL AND MOLECULAR BIOLOGY					
Course:	TECHNIQUES					
Credits:	5					
Pre-requisites,	Comprehensive Knowledge of Tools of Biochemistry/Molecular Biology					
if any:						
Course	Biochemical techniques combine various inter-disciplinary methods in biological					
Objectives	research and the course aims to provide students with the following objectives:					
	1. To understand the various techniques used in biochemical investigation and					
	microscopy.					
	2. To explain chromatographic techniques.\ and their applications					
	3. To explain electrophoretic techniques.					
	4. To comprehend the spectroscopic techniques and demonstrate their applications					
	in biochemical investigations.					
	5. To acquire knowledge of radio labelling techniques and centrifugation.					
Course	After completion of the course, the students should be able to:					
Outcomes	CO1. Attain good knowledge in modern used in biochemical investigation and					
	microscopy and apply the experimental protocols to plan and carry out simple					
	investigations in biological research. (K1, K5)					
	CO2. Demonstrate knowledge to implement the theoretical basis of					
	chromatography in upcoming practical course work. (K3, K5)					
	CO3. Demonstrate knowledge to implement the theoretical basis of electrophoretic					
	techniques in research work. (K3, K5)					
	CO4. Tackle more advanced and specialized spectroscopic techniques that are					
	pertinent to research. (K1, K2 & K5)					
	CO5. Tackle more advanced and specialized radioisotope and centrifugation					
	techniques that are pertinent to research work. (K1, K2 & K5)					
	Units					
Ι	General approaches to biochemical investigation, cell culture techniques and					
	microscopic techniques. Organ and tissue slice technique, cell distribution and					
	homogenization techniques, cell sorting, and cell counting, tissue Culture					
	techniques. Cryopreservation, Biosensors- principle and applications. Principle,					
	working and applications of light microscope, dark field, phase contrast and					

	fluorescent microscope. Electron microscope- Principle, instrumentation of TEM
	and SEM, Specimen preparation and applications-shadow casting, negative staining
	and freeze fracturing.
II	Chromatographic Techniques:
	Basic principles of chromatography- adsorption and partition techniques. Chiral
	Chromatography and counter current Chromatography. Adsorption Chromatography
	– Hydroxy apatite chromatography and hydrophobic interaction Chromatography.
	Affinity chromatography. Gas liquid chromatography- principle, instrumentation,
	column development, detectors and applications. Low pressure column
	chromatography – principle, instrumentation, column packing, detection,
	quantitation and column efficiency, High pressure liquid chromatography- principle,
	instrumentation, delivery pump, sample injection unit, column packing,
	development, detection and application. Reverse HPLC, capillary electro
	chromatography and perfusion chromatography.
III	Electrophoretic Techniques:
	General principles of electrophoresis, supporting medium, factors affecting
	electrophoresis, Isoelectric focusing-principle, ampholyte, development of pH
	gradient and application. PAGE-gel casting-horizontal, vertical, slab gels, sample
	application, detection-staining using CBB, silver, fluorescent stains. SDS PAGE-
	principle and application in molecular weight determination principle of disc gel
	electrophoresis ,2D PAGE. Electrophoresis of nucleic acids-agarose gel
	electrophoresis of DNA, pulsed field gel electrophoresis- principle, apparatus,
	application. Electrophoresis of RNA, curve. Microchip electrophoresis and 2D
	electrophoresis, Capillary electrophoresis.
IV	Spectroscopic techniques:
	Basic laws of light absorption- principle, instrumentation and applications of UV-
	Visible, IR, ESR, NMR, Mass spectroscopy, Turbidimetry and Nephelometry.
	Luminometry (Luciferase system, chemiluminescence). X - ray diffraction. Atomic
	absorption spectroscopy - principle and applications - Determination of trace
	elements
V	Radiolabeling Techniques and Centrifugation:
	Nature of radioactivity-detection and measurement of radioactivity, methods based
	upon ionisation (GM counter) and excitation (scintillation counter), autoradiography

	and applications of radioactive isotopes, Biological hazards of radiation and safety
	measures in handling radioactive isotopes.
	Basic principles of Centrifugation. Preparative ultracentrifugation - Differential
	centrifugation, Density gradient centrifugation. Analytical ultracentrifugation -
	Molecular weight determination.
Reading List	Principles and techniques of biochemistry and molecular biology:
(Print and	https://www.kau.edu.sa/Files/0017514/Subjects/principals%20and%20techiniques
Online)	%20of%20biochemistry%20and%20molecular%20biology%207th%20ed%
Self-Study	1. Types of rotors
	2. Colorimetry – principle and applications
Recommended	1.Keith Wilson , John Walker (2010) Principles and Techniques of Biochemistry
Texts	and Molecular Biology (7th ed) Cambridge University Press
	2.David Sheehan (2009), Physical Biochemistry: Principles and Applications (2nd
	ed), Wiley-Blackwell
	3.David M. Freifelder (1982) Physical Biochemistry: Applications to Biochemistry
	and Molecular Biology,W.H.Freeman
	4.Rodney F.Boyer (2012), Biochemistry Laboratory: Modern Theory and
	techniques,(2nd ed),Prentice Hall
	5.Kaloch Rajan (2011), Analytical techniques in Biochemistry and Molecular
	Biology, Springer
	6. Segel I.H (1976) Biochemical Calculations (2nd ed), John Wiley and Sons
	7. Robyt JF (2015) Biochemical techniques: Theory and Practice (1st ed), CBS
	Publishers & Distributors

I	PO 1 PO	2 PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
---	---------	--------	------	------	------	------	------	------	-------

CO 1	S	L	Μ	S	S	L	L	S	S	Μ
CO 2	S	Μ	М	S	М	L	М	S	S	L
CO 3	S	Μ	L	S	Μ	Μ	Μ	S	Μ	L
CO 4	S	S	L	S	S	Μ	Μ	S	Μ	Μ
CO 5	S	S	Μ	S	М	Μ	М	S	Μ	М

S-Strong MS-Strong M-Medium L-Low

|--|

	P23BCP11
Title of the	Laboratory Course on
Course:	BIOMOLECULES AND BIOCHEMICAL TECHNIQUES
Credits:	4
Pre-requisites	Knowledge on basic principles, Instrumentation of Biochemical
	techniques and metabolic reactions
Course Objectives	1. To instill skill in students enabling them to apprehend the wider
	knowledge about principles and techniques to be employed for the
	biomolecules under investigation.
	2.To inculcate the knowledge of various isolation and purification
	techniques of macromolecules like DNA, RNA, Glycogen and
	Starch,
	3. To perform colorimetric estimations to quantify important
	metabolites like lactate and tryptophan and minerals like calcium and
	iron from various sources.
	4. To achieve training in subcellular fractionation and to identify them
	by markers.
	5 To achieve training in various chromatographic techniques.
	6. To perform the isolation and identification of the organelles of a cell
	using differential centrifugation.
	7. To perform phytochemical screening and quantification enabling
	them to give an insight on phytochemicals this will be useful for
	future research.
Course Outcomes	On successful completion of this course, students should be able to:
	After completion of the course, the students should be able to:
	CO1. The student will be able to acquire knowledge and skill in the
	techniques used in the isolation, purification and estimation of different
	biomolecules that are widely employed in research (K1, K2, K4)
	CO2. The students will get acquainted with Principle, Instrumentation
	and method of Performing UV absorption studies of DNA, Protein and
	interpreting the alteration occurred during the process of denaturation
	(K1,K2, K 3, K4).

	CO3.The student will be fine-tune in handling the instruments like
	colorimeter, spectrophotometer and will be able to estimate the
	biomolecules and minerals from the given samples (K1, K2, K4,)
	CO4. The student, in addition to acquiring skill in performing various
	biochemical techniques can also learn to detect presence of
	phytochemicals and quantify them in the plant sample. (K1, K2, K3, K4
	& K6)
	CO5.The students will develop skill in analytical techniques like
	subcellular fractionation, Paper, Column and Thin layer
	Chromatography and the group experiments will enable them to build
	learning skills like team work, Problem solving, Communication ability.
	(K1, K2, K3, K4 & K6)
	Units
Ι	Biochemical studies and estimation of macromolecules
	1. Isolation and estimation of glycogen from liver.
	2. Isolation and estimation of DNA from animal tissue.
	3. Isolation and estimation of RNA from yeast.
	4. Purification of Polysaccharides –Starch and assessment of its purity
II	UV absorption
	1. Denaturation of DNA and absorption studies at 260nm.
	2. Denaturation of Protein and absorption studies at 280nm.
III	Colorimetric estimations
	1. Estimation of Pyruvate
	2. Estimation of tryptophan.
IV	Estimation of minerals
	1. Estimation of calcium
	2. Estimation of iron
V	Plant Biochemistry
	1. Qualitative analysis Phytochemical screening

	2. Estimation of Flavonoids - Quantitative analysis
VI	Group Experimente
VI	1 Experiments
	1. Fractionation of sub-cellular organelles by differential
	centrifugation-Mitochondria and nucleus
	2. Identification of the separated sub-cellular fractions using marker
	enzymes (any one)
	3.Separation of identification of lipids by thin layer chromatography.
	4.Separation of plant pigments from leaves by column
	chromatography
	5. Identification of Sugars by Paper Chromatography
	6.Identification of Amino acids by Paper Chromatography
Reading List	1.https://www.researchgate.net/publication/313745155_Practical_Bio
(Print and Online)	chemistry_A_Student_Companion
	2.https://doi.org/10.1186/s13020-018-0177-x
	3.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5368116/
	4.https://www.life.illinois.edu/biochem/455/Lab%20exercises/2Photo
	metry/spectrophotometry.pdf
	5.https://ijpsr.com/bft-article/determination-of-total-flavonoid-and-
	phenol-content-in-mimusops-elengi-linn/?view=fulltext
	6.https://skyfox.co/wp-content/uploads/2020/12/Practical-Manual-of-
	Biochemistry.pdf
Self-Study	1. Laboratory Safety Rules, Requirements and Regulations.
	2. Preparation of standard solutions and reagent
Books Recommended	1. David Plummer (2001) An Introduction to Practical Biochemistry
	(3rd ed) McGraw Hill Education (India) Private Ltd
	2. Jayaraman, J (2011), laboratory Manual in Biochemistry, New age
	publishers
	3. Varley H (2006) Practical Clinical Biochemistry (6th ed), CBS
	Publishers
	4. O. Debiyi and F. A. Sofowora, (1978) "Phytochemical screening of
	medical plants," Iloyidia, vol. 3, pp. 234–246,

5. Prof. Sarin A. Chavhan, Prof. Sushilkumar A. Shinde (2019) A
Guide to Chromatography Techniques Edition:1
6. Analytical techniques in Biochemistry and Molecular Biology;
Katoch, Rajan. Springer (2011)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	S	S	S	S	М	S	L	S	М	S
CO 2	S	S	S	S	М	S	L	S	М	S
CO 3	S	S	S	S	М	S	М	S	М	S
CO 4	S	S	S	S	S	S	S	S	S	S
CO 5	S	S	S	S	S	S	S	S	S	S

S-Strong M-Medium L-Low

SEMESTER II

Course	CORE PAPER IV
Title of the Course:	P23BCT23-ENZYMOLOGY
Credits:	5

Pre-requisites	Basic knowledge about catalysis, kinetics and chemical reaction mechanisms.
Course Objectives	 Students will be introduced to the theory and practice of enzymology. Mechanisms of catalysis and factors affecting catalysis will be understood The kinetics of enzyme catalyzed reactions in the absence and presence of inhibitors will be studied and the options for applying enzymes and their inhibitors in medicine will be analyzed.
	 4. Students will learn about the applications of enzymes in research, medicine, and industry, which will prepare them for careers in industrial and biomedical research. 5. The control of metabolic pathways and cellular responses through
	enzyme regulation will be emphasized.
Course Outcomes	 On successful completion of this course, students should be able to: CO1: Describe the catalytic mechanisms employed by enzymes (K1, K2 & K5) CO2: Choose and use the appropriate methods to isolate and purify enzymes and check the purity of the enzyme. (K1, K2 , K3, K4 & K5) CO3: Analyze enzyme kinetic data graphically, calculate kinetic parameters, determine the mechanism of inhibition by a drug/chemical and analyze options for applying enzymes and their inhibitors in
	 medicine (K1, K2, K3 &K4) CO4: Explain allosterism and cooperativity and differentiate Michaelis-Menten kinetics from sigmoidal kinetics. The role played by enzymes in the regulation of vital cellular processes will be appreciated. (K1, K2, K5, K6) CO5: Highlight the use of enzymes in industries and biomedicine (K1, K2 & K3)

Units							
I	Introduction to enzymes and features of catalysis: A short history of the discovery of enzymes and how they became powerful biochemical tools. Holoenzyme, apoenzyme, cofactors, coenzyme, prosthetic groups, Classification and Nomenclature, Specificity of enzyme action-group specificity, absolute specificity, substrate specificity, stereochemical specificity. Active site, Identification of amino acids at the active site-trapping of ES complex, identification using chemical modification of amino acid side chains and by site-directed mutagenesis.						

II	Mechanisms of enzyme catalysis: acid-base catalysis, covalent catalysis, electrostatic catalysis, metal ion catalysis, proximity and orientation effects, Low barrier H-bonds, Structural flexibility Mechanism of action of chymotrypsin Enzyme techniques: Isolation and purification of enzymes - Importance
11	of enzyme purification, methods of purification- choice of source,
	extraction, fractionation methods-based on size or mass (centrifugation,
	gel filtration); based on polarity (ion-exchange chromatography,
	electrophoresis, isoelectric focusing, hydrophobic interaction
	chromatography); based on solubility (change in pH, change in ionic
	strength); based on specific binding sites (affinity chromatography)
	,choice of methods, Criteria of purity of enzymes. Enzyme units - Katal,
	IU. Measurement of enzyme activity - discontinuous, continuous,
	coupled assays; stopped flow method and its applications. Isoenzymes
	and their separation by electrophoresis with special reference to LDH
III	Enzyme kinetics I: Thermodynamics of enzyme action, Activation energy,
	transition-state theory, steady-state kinetics & pre-steady-state kinetics.
	Single substrate enzyme catalyzed reactions -assumptions, Michaelis- Menten and Briggs Haldane kinetics, derivation of Michaelis Menten
	equation Double reciprocal (Lineweaver-Burk) and single reciprocal
	(Eadie -Hofstee) linear plots, their advantages and limitations. Analysis of
	kinetic data- determination of Km, Vmax, kcat, and their physiological
	significance, Importance of kcat/Km. Enzyme inhibition: Irreversible
	inhibition. Reversible inhibition-Competitive, uncompetitive,
	equation in the presence of competitive uncompetitive and non-
	competitive inhibitors. Graphical analysis - Diagnostic plots for the
	determination of inhibition type. Therapeutic use of enzyme inhibitors-
	Aspirin, statins (irreversible inhibitors), Methotrexate (competitive
	inhibitor), Etoposide (non-competitive inhibitor), camptothecin
	(uncompetitive inhibitor). Demonstration: Using Microsoft Excel to Plot and Analyza Kinatic Data
IV	Enzyme kinetics II: Allosteric enzymes: Cooperativity MWC and KNF
	models of allosteric enzymes. Sigmoidal kinetics taking ATCase as an
	example. Regulation of amount and catalytic activity by - extracellular
	signal, transcription, stability of mRNA, rate of translation and
	degradation, compartmentation, pH, temperature, substrate concentration,
	allosteric effectors, covalent modification. Regulation of glycogen
	synthase and glycogen phosphorylase. Feedback inhibition-sequential,
	concerted, cumulative, enzyme-multiplicity with examples.
	Bi - Substrate reactions: Single Displacement reactions (SDR) (Ordered
	and Random bi bi mechanisms), Double Displacement reactions (DDR)
	(Ping pong mechanism), Examples, Cleland's representation of bisubstrate
	reactions, Graphical analysis (diagnostic plots) to differentiate SDR from
	DDR.

V	Enzyme technology: Immobilization of enzymes – methods - Reversible immobilization (Adsorption, Affinity binding), Irreversible immobilization (Covalent coupling, Entrapment and Microencapsulation, Crosslinking, Advantages and Disadvantages of each method, Properties of immobilized enzymes. Designer enzymes- ribozymes and deoxyribozymes, abzymes, synzymes. Enzymes as therapeutic agents-therapeutic use of asparaginase and streptokinase. Application of enzymes in industry- Industrial application of rennin, lipases, lactases, invertase, pectinases, papain.						
Reading List	Enzymes MIT OpenCourseWare Free Online Course Materials						
(Print and Online)	https://ocw.mit.edu/high-school/biology/exam-prep/chemistry-of-						
	life/enzymes/						
	Enzymology						
	https://onlinecourses.swayam2.ac.in/cec20_bt20/preview						
	https://mooc.es/course/enzymology/						
	The active site of enzymes						
	https://dth.ac.in/medical/courses/biochemistry/block-1/1/index.php						
	Enzymes and Enzyme Kinetics						
	https://www.lecturio.com/medical-courses/enzymes-and-enzyme						
	kinetics.course#/						
	Mechanistic enzymology in drug discovery: a fresh perspective						
	https://www.nature.com/articles/nrd.2017.219						
	Enzyme Biosensors for Biomedical Applications: Strategies for						
	Safeguarding Analytical Performances in Biological Fluids						
	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4934206/						
Self-Study	1. Mechanistic enzymology in drug discovery						
	2. Enzyme Biosensors for Biomedical Applications						
Recommended	1.Enzymes: Biochemistry, Biotechnology and Clinical chemistry, 2nd						
Texts	edition, 2007, Palmer T and Bonner P; Affiliated- East West press private						
	Ltd, New Delhi						
	2.Fundamentals of Enzymology, 3rd edition, 2003, Price NC and Stevens						
	L; Oxford University Press, New York						
	3.Voet's Biochemistry, Adapted ed, 2011, Voet, D and Voet JG; Wiley,						
	India						
	4.Lehninger Principles of Biochemistry, 8th edition, 2021, Nelson DL						
	and Cox MM; WH Freeman & Co, New York						
	5. Biochemistry, Berg JM, Stryer L, Gatto, G, 8th ed, 2015; WH Freeman						
	& Co., New York.						
	6.Enzyme Kinetics and Mechanism; Cook PF, Cleland W, ;2007;						
	Garland Science, London						

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	S	Μ	S	L	Μ	S	L	S	S	Μ
CO 2	S	S	S	S	Μ	Μ	L	S	S	S
CO 3	S	S	S	S	Μ	Μ	Μ	S	S	S
CO 4	S	S	S	S	Μ	Μ	Μ	S	S	S
CO 5	S	S	S	S	Μ	L	Μ	S	S	S

Mapping with Programme Outcomes:

S-Strong M-Medium L-Low

Course I	CORE PAPER –							
	V							
Title of the								
Course:	P23BCT24 - CLINICAL BIOCHEMISTRY							
Credits:	5							
Pre-requisites, if	The student should have a basic knowledge of body fluids and their							
any:	composition and metabolism; anatomy and physiology of vital							

	CO4. To appreciate the role of pre and post-natal diagnosis leading to								
	healthy progeny.								
	CO5. To link the serum hormone levels and clinical symptoms with								
	underlying hormonal disturbances. To review the onward								
	transmission of signal via downstream signaling molecules								
	from cell surface to the nucleus by different pathways by								
	comparing and contrasting them and critically evaluate the								
	network between them resulting in the biological outcome.								
	Units								
I Biochemical investigations in diagnosis, prognosis, monitoring									
	screening: Specimen collection – blood, (primary /Secondary								
	specimen)., urine and CSF. Preservation of biological specimens -								
	blood, urine, CSF and amniotic fluid. Biological reference ranges;								
	Disorders of blood cells: Hemolytic, iron deficiency and								
	aplasticanemia and diagnosis, sickle cell anaemia, thalassemia								
	HBA1C variants. Porphyrias, Thrombocytopenia, Causes of								
	leucopenia, leukemia and leucocytosis. Disorders of blood clotting								
	mechanism - Von willebrand's disease, Hemophilia A, B and C,								
	diagnostic test for clotting disorders,								
	D-dimer and its clinical significance								
II	Diabetes mellitus: pathology and complications: Acute changes								
	Chronic complications: Diabetic nephropathy, neuropathy,								
	retinopathy and Diabetic foot ulcers, Random/Fasting/PP glucose								
	testing, Impaired glucose tolerance (IGT), Impaired fasting glucose								
	(IFT), Diagnosis-by GTT, Pre-diabetes, Gestational DM,								
	Glycosylated Haemoglobin (HBA1c); Glycated albumin.,								
	Hypoglycaemia and critical alert value for glucose. Markers of								
	complications of Diabetes mellitus: Metabolic syndrome, Lipid								
	profile &lipoproteinemia, Atherosclerosis, Diabetic nephropathy,								
	Micralbuminuira, eGFR.								
	Point of care testing for glucose (Glucometers) and continuous glucose								
	monitoring (CGM) : principle and its use. Major groups of anti-diabetic								
	drugs. Diet and life style modifications								

III	Diagnostic Enzymology: Clinically Important Enzymes and Isoezyme
	as diagnostic markers: Clinical significance of AST, ALT, ALP, ACP,
	CK, γ -GT, amylase, pseudocholinesterase and their pattern in
	Myocardial infarction; Liver disease, Bone disease, Muscle disease,
	Cancer (tumor markers), GI tract pancreatitis); Enzymes as therapeutic
	agents.
	Pre- and post-natal testing: Amniocentesis, prenatal detection of
	inborn errors of metabolism in developing fetus- Autosomal recessive
	mode of inheritance- cystic fibrosis, X linked recessive inheritance-
	Duchenne muscular dystrophy. New born screening (NBS) for In born
	errors of metabolism, Tandem mass spectrometry application in NBS
IV	Liver function tests: Liver function test panel, Fatty liver . Plasma
	protein changes in liver diseases. Hepatitis A, B and C. Cirrhosis and
	fibrosis. Portal hypertension and hepatic coma. Acute phase proteins -
	CRP, Haptoglobins, α -fetoprotein, ferritin and transferrin and their
	clinical significance, Interpreting serum protein electrophoresis.
	Inflammatory markers (cytokines such as TNF-alpha IL6 and others)
V	Renal function tests - tests for glomerular and tubular function-Acute
	and chronic renal failure-Glomerulonephritis, Nephrotic syndrome,
	uraemia-urinary calculi-Nephrocalcinosis and Nephrolithiasis-causes,
	pathology and symptoms. Chronic kidney disease. Dialysis-
	Hemodialysis and peritoneal dialysis.
	Electrolyte disorder : calcium: hypercalcemia and hypocalcemia;
	Calcium homoestasis in Blood;
	phosphate: hyperphosphatemia or hypophosphatemia;
	Clinical significance: Potassium: hyperkalaemia and hypokalaemia,
	Sodium: hypernatremia and hyponatremia; Chloride: hyperchloremia,
	hyporchloremia
	Hormonal disorders and diagnostics: T3, T4 and TSH in the
	diagnosis of thyroid disorders; Diagnostic methods for disorders
	associated with adrenal, pituitary and sex hormones - Addison's
	disease, Cushing's syndrome, pituitary tumour, Hypopituitarism,
	Hypogonadism

Reading List (Print and	1.Utility of HIL in Clinical Chemistry:					
Online)	https://www.aacc.org/science-and-research/clinical-chemistry-trainee-					
	council/trainee-council-in-english/pearls-of-laboratory-					
	medicine/2018/utility-of-hil-in-clinical-chemistry					
	2. Pre, Post and Analytical Errors in Clinical Chemistry					
	laboratory					
	DOI: 10.7860/NJLM/2016/22587:2173					
	https://doi.org/10.2147/JMDH.S286679					
	3. Standards of Medical Care in Diabetes—2022 Abridged for					
	Primary Care Providers					
	https://diabetesjournals.org/clinical/article/40/1/10/139035/Standards-					
	of-Medical-Care-in-Diabetes-2022					
	https://doi.org/10.2337/diaspect.16.1.32					
	http://www.ngsp.org/					
	4. Quality control in clinical laboratory					
	https://www.researchgate.net/publication/335830829_Quality_Contro					
	l_in_a_Clinical_Laboratory					
	https://labpedia.net/quality-control-of-the-clinical-laboratory/					
	https://journals.sagepub.com/doi/full/10.1016/j.jala.2008.12.001					
	https://doi.org/10.1016/B978-0-12-407821-5.00004-8					
	https://www.westgard.com/clia.htm					
	https://www.labroots.com/webinar/bio-rad-unity-solution-molecular-					
	quality-control-data-management					
Self-Study	1. Potential sources of variability in the estimation of the					
	analytes:					
	Pre-analytical phase: acceptance rejection criteria in terms of					
	haemolysis/icteric/lipemia (HIL) interferences					
	Analytical phase: Linearity, detection limits precision, accuracy,					
	specificity, sensitivity; Total Allowable Error. (Definitions and					
	examples).					
	Post-analytical phase: Units of reporting of clinical chemistry					
	parameters-					

	2. Interpretation of results in clinical chemistry based on						
	laboratory investigations and quality control:						
	• critical / alert values						
	American Diabetes Association (ADA) Standards of						
	Medical Care in Diabetes (yearly update); HBA1C testing: NGSP						
	• Case studies to review						
	• Quality control for clinical chemistry in laboratory						
Recommended Texts	1. ThomasM.Devlin (2014) Textbook of Biochemistry with Clinical						
	Correlations (7th ed). John Wiley & Sons						
	2. Montgomery R, Conway TW, Spector AA (1996), Biochemistry:						
	A Case-Oriented Approach (6th ed), Mosby Publishers, USA.						
	3. Tietz Fundamentals of Clinical Chemistry and Molecular						
	Diagnostics (2018) (8th ed), Saunders						
	4. Dinesh Puri, (2020) Text book of Biochemistry: A clinically						
	oriented approach – 4th Edition, Elsevier.						
	5. M.N.Chatterjee and Rana Shinde (2012).Textbook of Medical						
	Biochemistry (8th ed), Jaypee Brothers Medical Publishers.						
	6. Clinical Case Discussion In Biochemistry A Book On Early						
	Clinical Exposure (ECE), Poonam Agrawal, 2021, CBS						
	Publishers & distributors pvt. Ltd						

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	S	S	Μ	S	S	S	S	Μ	М	S
CO 2	S	М	S	М	S	S	S	Μ	М	Μ
CO 3	S	S	S	S	S	Μ	S	S	М	Μ

CO 4	S	Μ	Μ	Μ	S	Μ	S	S	S	Μ
CO 5	S	Μ	S	Μ	S	S	S	S	S	S

S-Strong M-Medium L-Low

Course	CORE PAPER -VI
P23BCP22	LAB COURSE IN ENZYMOLOGY AND CLINICAL
	BIOCHEMISTRY
Credits:	4

Pre-requisites	Knowledge on basic principles, Instrumentation of Biochemical
	techniques and metabolic reactions
Course Objectives	1. To inculcate skill in students enabling them to apprehend the wider
	knowledge about principles and techniques to be employed for the
	assayof enzymes under investigation.
	2. To inculcate the knowledge of isolation and purification techniques
	ofenzymes using alkaline phosphatase as an example
	3. To perform experiments to study the factors affecting enzyme
	activity
	4. To achieve training in assay of enzymes
	5. To achieve training in basic microbiological techniques –
	preparation of culture, sterilization and staining methods.
	6. To perform the blood grouping test and to prepare blood smear to
	studydifferent types of blood cells
	7. To learn molecular biology techniques like Gel electrophoresis and
	Blotting techniques
	8. To introduce industrial visit so that students may be aware of actual
	need of the industry and various opportunities available
Course Outcomes	On successful completion of this course, students should be able to:
	After completion of the course, the students should be able to:
	CO1. The student will be able to employ the relevant techniques for
	isolation and purification of enzymes and gain skill in kinetic studies
	isolation and purification of enzymes and gain skill in kinetic studies which is essential for research activity (K1, K2, K4)
	isolation and purification of enzymes and gain skill in kinetic studieswhich is essential for research activity (K1, K2, K4)CO2. Student will acquire ability in performing enzyme assay, and
	 isolation and purification of enzymes and gain skill in kinetic studies which is essential for research activity (K1, K2, K4) CO2. Student will acquire ability in performing enzyme assay, and explicate the methods that form the basis of enzyme characterization.
	 isolation and purification of enzymes and gain skill in kinetic studies which is essential for research activity (K1, K2, K4) CO2. Student will acquire ability in performing enzyme assay, and explicate the methods that form the basis of enzyme characterization. (K1, K2, K4)
	 isolation and purification of enzymes and gain skill in kinetic studies which is essential for research activity (K1, K2, K4) CO2. Student will acquire ability in performing enzyme assay, and explicate the methods that form the basis of enzyme characterization. (K1, K2, K4) CO3. Learn the Basic concepts in microbiology and cell biology which
	 isolation and purification of enzymes and gain skill in kinetic studies which is essential for research activity (K1, K2, K4) CO2. Student will acquire ability in performing enzyme assay, and explicate the methods that form the basis of enzyme characterization. (K1, K2, K4) CO3. Learn the Basic concepts in microbiology and cell biology which will be helpful for interdisciplinary research work. (K1, K3, K4)
	 isolation and purification of enzymes and gain skill in kinetic studies which is essential for research activity (K1, K2, K4) CO2. Student will acquire ability in performing enzyme assay, and explicate the methods that form the basis of enzyme characterization. (K1, K2, K4) CO3. Learn the Basic concepts in microbiology and cell biology which will be helpful for interdisciplinary research work. (K1, K3, K4) CO4. Students will be trained in separation techniques used in
	 isolation and purification of enzymes and gain skill in kinetic studies which is essential for research activity (K1, K2, K4) CO2. Student will acquire ability in performing enzyme assay, and explicate the methods that form the basis of enzyme characterization. (K1, K2, K4) CO3. Learn the Basic concepts in microbiology and cell biology which will be helpful for interdisciplinary research work. (K1, K3, K4) CO4. Students will be trained in separation techniques used in molecular Biology which will be supportive in their future research
	 isolation and purification of enzymes and gain skill in kinetic studies which is essential for research activity (K1, K2, K4) CO2. Student will acquire ability in performing enzyme assay, and explicate the methods that form the basis of enzyme characterization. (K1, K2, K4) CO3. Learn the Basic concepts in microbiology and cell biology which will be helpful for interdisciplinary research work. (K1, K3, K4) CO4. Students will be trained in separation techniques used in molecular Biology which will be supportive in their future research (K1, K3, K4 & K6)
	 isolation and purification of enzymes and gain skill in kinetic studies which is essential for research activity (K1, K2, K4) CO2. Student will acquire ability in performing enzyme assay, and explicate the methods that form the basis of enzyme characterization. (K1, K2, K4) CO3. Learn the Basic concepts in microbiology and cell biology which will be helpful for interdisciplinary research work. (K1, K3, K4) CO4. Students will be trained in separation techniques used in molecular Biology which will be supportive in their future research (K1, K3, K4 & K6) CO5. Industrial visits will provide the students with an opportunity to

	employment practices. Students will have an exposure to Industrial						
	standard and current work practices (K1, K2, K3, K4 & K6)						
Units							
I	Enzymology						
	Alkaline Phosphatase						
	a. Isolation of Alkaline Phophatase from goat kidney.						
	b. Purification of alkaline phosphatase						
	c. Checking the purity using SDS-PAGE						
	d. Determination of optimum pH and temperature of alkaline						
	phosphatase.						
	e. Determination of specific activity and Km of alkaline phosphatase.						
	f. Effect of activators and inhibitors on the activity of alkaline						
	phosphatase.						
	Assay of enzymes						
	a. Salivary Amylase						
	b. Acid Phosphatase						
II	Clinical Biochemistry Blood analysis Blood sugar - Azatoor and king's method Blood urea - Dam method Blood cholesterol - Zak's method Blood uric acid - Caraway's method Creatinine - Picric acid method Estimation of protein by Biuret method Calcium and phosphorous						

Reading List	1.https://www.researchgate.net/publication/337146254_Kinetic_studies							
(Print and Online)	_with_alkaline_phosphatase							
	2.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4846332/							
	3.https://www.ijsr.net/archive/v3i8/MDIwMTU0MDk=.pdf							
	https://www.researchgate.net/publication/349318898_ABC_of_							
	Periheral_smear							
	5.https://ncdc.gov.in/WriteReadData/1892s/File608.pdf							
	5.https://www.ncbi.nlm.nih.gov/books/NBK562156/							
Calf Cturder	1. Preparation of Buffers and pH measurement							
Sen-Study	2. Michaelis-Menten equation and Lineweaver Burk plot							
Books Recommended	1. David Plummer (2001) An Introduction to Practical							
	Biochemistry (3rd ed) McGraw Hill Education (India) Private							
	Ltd							
	 Jayaraman, J (2011), laboratory Manual in Biochemistry, New age publishers 							
	3. Fundamentals of Enzymology; 3rd Edn. Nicholas C. Price and							
	Lewis Stevens, Oxford University Press (2012).							
	4. Enzymes: A Practical Introduction to Structure, Mechanism, and							
	Data Analysis; Robert A. Copeland, Wiley-VCH Publishers (2000).							
	5. ShivanandaNayak B. Manipal Manual of Clinical							
	Biotechnology, Jaypee Brothers, 2013.							
	6. DrewProvan, Oxford Handbook of Clinical and Laboratory Investigation OUP, Oxford,2018.							
	 Practical Enzymology, Second Revised Editon: Hans Bisswanger, Wiley – Blackwell; 2 edition (2011) 							

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	S	S	S	S	Μ	S	L	S	Μ	S

Mother Teresa Womens University, Kodaikanal

CO 2	S	S	S	S	Μ	S	L	S	Μ	S
CO 3	S	S	S	S	Μ	S	М	S	М	S
CO 4	S	S	S	S	S	S	S	S	S	S
CO 5	S	S	S	S	S	S	S	S	S	S

S-Strong M-Medium L-Low

ELECTIVE PAPERS

Course	ELECTIVE PAPER
Title of the Course:	P23BCE1A - ENERGY AND DRUG METABOLISM
Credits:	3
Pre-requisites	Basic knowledge on biochemical reactions such as addition, deletion, rearrangement, transfer and breaking of bonds
Course Objectives Course Outcomes	 Familiarize on concepts of enthalpy, entropy, free energy, redox system, biological oxidation and high energy compounds Provide an insight into the relationship between electron flow and phosphorylation Inculcate knowledge on processes involved in converting light energy to chemical energy and associated food production by autotrophs Provide a platform to understand the versatile role of Krebs cycle, transport of NADH across mitochondrial membrane and energetics Educate on the various phases of xenobiotic metabolism On successful completion of this course, students should be able to: Appreciate the relationship between free energy and redox potential and will be able to justify the role of biological oxidation and energy rich compounds in maintaining the energy level of the system (K1,K2,K3,K4) CO2. Gain knowledge on role of mitochondria in the production of energy currency of the cell (K1, K2, K5, K6) CO3. Acquaint with the process of photosynthesis (K1, K2, K5) CO4. Comprehend on the diverse role of TCA cycle and the energy obtained on complete oxidation of glucose and fatty acid (K1, K2, K4, K5)
	(K1, K2, K4, K5)
	Units
I	Thermodynamic- principles in biology- Concept of entropy, enthalpy and free energy change. Redox systems. Redox potential and calculation of free energy. Biological oxidation – Oxidases, dehydrogenases, hydroperoxidases, oxygenases. Energy rich compounds – phosphorylated and non-phosphorylated. High energy linkages.
Π	Electron transport chain-various complexes of ETC, Q-cycle. Inhibitors of ETC. Oxidative phosphorylation-P/O ratio, chemiosmotic theory. Mechanism of ATP synthesis - role of F0-F1 ATPase, ATP-ADP cycle. Inhibitors of oxidative phosphorylation ionophores, protonophores, Regulation of oxidative phosphorylation

III	Light reaction-Hills reaction, absorption of light, photochemical event.
	Photo ETC-cyclic and non-cyclic electron flow. Photophosphorylation-
	role of CF0-CF1 ATPase. Dark reaction- Calvin cycle, control of C3
	pathway, and Hatch-Slack pathway (C4 pathway), Photorespiration.
	Synthesis and degradation of starch
IV	Interconversion of major food stuffs. Energy sources of brain, muscle,
	liver, kidney and adipose tissue. Amphibolic nature of Citric acid cycle.
	Anaplerotic reaction. Krebs cycle, Inhibitors and regulation of TCA
	cycle. Transport of extra mitochondrial NADH – Glycerophosphate
	shuttle, malate aspartate shuttle. Energetics of metabolic pathways –
	glycolysis, (aerobic and anaerobic), citric acid cycle, beta oxidation
V	Activation of sulphate ions – PAPS APS SAM and their biological role
, v	Metabolism of xenobiotics – Phase I reactions – hydroxylation oxidation
	and reduction Phase II reactions – glucuronidation sulphation
	glutathione conjugation acetylation and methylation. Mode of action
	and factors affecting the activities of venobiotic enzymes
	1 https://chamad.cham.purdua.adu/gangham/tonjarovjaw/hp/ah21/gibh
	s php
	2 https://www.pabi.plm.pib.cov/pma/artialas/DMC7767752/#: .toxt_T
	2.https://www.hcol.html.html.gov/pinc/articles/FMC/70/732/#.~.text=1 hal/ 20mitashandrial// 20alastron// 20transnort// 20ahain asllular// 2
	0 A TD9/ 20through 9/ 20 pridative 9/ 20 ph apph amplatian
	0ATP%2001100g1%200X10ative%20pilospiloty1ation.
	5. https://www.researchgate.net/figure/Oxidative-phosphorylation-in-
	mitochondrial-electron-transport-chain-EIC-and-
Reading List	proton_fig1_230/98915
(Print and Online)	4.https://www.lyndnurstschools.net/userfiles/84/Classes/851/photosynt
	hesis%20light%20&%20dark%20reactions%20ppt.pdf?id=560837
	5.https://bajan.files.wordpress.com/2010/05/amphibolic-nature-of-
	krebs-cycle.pdf
	6.https://www.sciencedirect.com/topics/medicine-and-dentistry/
	xenobiotic-metabolism#:~:text=Xenobiotic%20metabolism
	%20can%20be%20defined,more%20readily%20excreted%20hydrop
	hilic%20metabolites
Self-Study	1. Calculation of Keq and \triangle G
	2. Interrelationship of carbohydrate, protein, and fat metabolism-role of
December de d	acetyr CoA
Recommended Toxts	L.David L.Nelson and Michael M.Cox (2012) Lenninger Principles of
I CALS	Biochemistry (otn ed), W.H.Freeman
	2. Robert K. Murray, Darryl K. Granner, Peter A. Mayes, and Victor
	w. Kodwell (2012), Harper's Illustrated Biochemistry, (29th ed),
	McGraw-Hill Medical
	3. Metzler D.E (2003). The chemical reactions of living cells (2nd ed),
	Academic Press.
	4. Zubay G.L (1999) Biochemistry, (4th ed), Mc Grew-Hill.
	5. Devlin RM (1983) Plant Physiology (4th ed), PWS publishers

6.Taiz L, Zeiger E (2010), Plant Physiology (5th ed), Sinauer
Associates, Inc

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	S	S	S	Μ	S	Μ	S	S	S	Μ
CO 2	S	S	S	S	S	S	S	S	S	S
CO 3	S	S	S	S	S	S	S	S	S	S
CO 4	S	Μ	S	Μ	S	Μ	S	S	S	L
CO 5	S	Μ	S	S	S	Μ	S	S	S	S

S-Strong M-Medium L-Low

Ieululli L-Low

Course Code		ELECTIVE PAPER	[L	Т	Р	С
P23BCE1B	BIOPHY	SICAL METHODOLOGY		3	2	-	3
Cognitive Level	K1:Recall	K2:Understand	K3:Apply				
Learning objective	 To learn To learn To know To under spectrosc chromato 	the properties of electromagnetic the principle and applications of U about radioactive isotopes and its rstand the instrumentation, pr opy and microscopy, radioac ography.	radiation. JV, NMR, ESR spect biological application inciple, types and tive isotopes, cent	ros ns. u rifu	sco ses 1ga	py. o tio	of n,
Unit-I	Chromatograp	bhic techniques	1	121	hoi	ırs	
Principle, techniq chromatography. Electrophoresis te SDS-PAGE, Nativ	ue and application Principle, component chniques: Principle PAGE, Isoeled	ons of paper, TLC, ion- exchange ponents, limitations and applicate paper, gel ctric focusing.	, molecular sieve and lications of GC ar s –Agarose gel elect	ad nd rop	lson HI pho	rpti PLC ores	on 2. sis,
	Centrilugation				<u>10</u>	ILS	
Sedimentation Ve Centrifugal Force preparative and an	types and app locity, Relations . Ultracentrifuga alytical ultracent	hip between rpm and g. Centrifu tion – types, optical methods us trifuges.	gal field. Relative and applications of	of	cie	nt,	
Unit-III	Microscopy	0	1	2	hoi	ars	
Basic principles Electron microsco Sample. Electron o	of light microsc py–Principle, in diffraction –princ	opy, phase contrast microscopy, strumentation and application of ciple and application.	fluorescence microso SEM and TEM Prep	coj pai	py. ati	on	of
Unit-IV	X – Rays		1	2	hoi	urs	
Properties of X ra of radioactivity, n biological research	ays. X ray diffra neasurement of n. Autoradiograp	ction detection and application. F radio activity, applications of ra hy.	Radio isotopes techniq dioactive and stable	que isc	s—i otoj	nati pes	ure in
Unit - V	Spectroscopy		1	2	hoi	ars	
Principles of spe radiations. Molecu principle, instrume spectroscopy, Nu spectroscopy–prin application.	ctroscopy–Regio ilar and atomic s entation and appl clear Magnetic ciple, instrument	ons of electromagnetic radiation, pectra, types and molecular spect ications of atomic absorption, UV Resonance Spectroscopy, Ele- tation and application. Raman Spe	properties of electro tra. Absorption spectr visible spectroscopy ctron Spin resonanc ctroscopy; principles	ma oso , Ir ce. , m	ign cop ifra N ieth	etio y - arec Iass nod	2 1 S -,
Text Books							
 L. Veerakumar M.H. Fulekar Pvt. Ltd, 2014 John G. Webst Terence Allen, Press,2015 	i Bioinstrumenta & Bhawana Par er Bioinstrument Microscopy: A	tion, MJP Publisher, 2019. ndey, Bioinstrumentation I.K. Ir ation by, Wiley,2018. Very Short Introduction, Publish	iternational Publishin	ıg	Ho	use	3
References							
1. M. J. Reilly Bio	instrumentation	by, CBS Publishers & Distributer	rs, 2016.				

- 2. Keith Wilson and John Wilson. . Practical Biochemistry. Cambridge University Press, 2018
- 3. Donald L. Pavia, Introduction to Spectroscopy, Publisher Cengage Learning India Private Limited,2015
- 4. Hans-Joachim Hübschmann, Handbook of GC-MS: Fundamentals and Applications, Wiley,2015.

E-References link

1.https://www.nature.com/scitable/topicpage/protein-structure-14122136/ 2.https://www.hindawi.com/journals/ijpro/2014/147648/

3.<u>https://world-nuclear.org/information-library/non-power-nuclear-</u>applications/radioisotopes-research/radioisotopes-in-medicine.aspx

Course outcome

Upon	Upon completion of this course, the students will be able to					
со	Course Outcomes	Knowledge Level				
CO1	know the principle and techniques of chromatography.	K1, K2				
CO2	comprehend about types and applications of centrifuges.	K1, K2, K3				
CO3	list the types and application of microscopy.	K1, K2, K3				
CO4	learn about importance of radioactive isotopes.	K1, K2				
CO5	gain the knowledge on types, principle, instrumentation and applications of spectroscopy.	K1, K2				

Mapping of COs with POs & PSOs:

~ ~	РО				M		2-1		PSO				
со	1	2	3	4	5 9	6	7	8.9	5	2	3	4	5
CO1	S	М	М	S	S	S	S	SO	S	М	S	М	S
CO2	S	М	S	S	M	Mo	MED	M/S	S	S	S	Μ	М
CO3	Μ	S	S	S	M	S	S	Savi	М	S	Μ	S	S
CO4	Μ	S	М	М	S	SOAV	MME	M	S	S	S	S	S
CO5	S	Μ	S	Μ	S	S	S	S	S	S	S	S	S

Strongly Correlating (S)	- 3 marks ;	Moderately Correlating	(M)	- 2 marks
Weakly Correlating (W)	- 1 mark;	No Correlation	(N)	- 0 mark

Course	ELECTIVE PAPER
Title of the Course:	MOLECULAR BASIS OF DISEASES AND THERAPEUTIC STRATEGIES
Credits:	3
Pre-requisites, if any:	Knowledge of Human Physiology, Metabolism and Clinical Biochemistry
Course Objectives	1.To understand the concepts of the mechanisms involved in regulation of blood sugar and management of diabetes mellitus
	2.To gain in-depth knowledge of the mechanisms of cancer and of tumor metastasis
	3. The student will review the basic organization of the central and peripheral nervous system that coordinate the sensory and motor functions of the body. In addition, the student will explore impaired features underlying the major neuropathological complications.
	4.To gain knowledge in renal diseases
	5.To understand the mechanisms involved in cardiac disorders
Course Outcomes	 On completion of this course the student will be able to understand CO1.Overall view about the complications of diabetes mellitus and its management. CO2.Comprehensive understanding of the concepts of cancer biology and implicating the theoretical concepts for further research CO3.Understand and appreciate the pathophysiology of conditions affecting the nervous system. CO4.A thorough knowledge of renal and cardiac diseases with emphasis related to mechanistic aspects and therapeutic interventions. CO5. A thorough knowledge on the experimental models of noncommunicable diseases that will be applied for future research or project dissertation. An in-depth knowledge on development of drugs against non-communicable diseases.
	Units
I	Mechanism of blood sugar regulation in human body. Pathophysiology of Type I and II diabetes, Diabetes – investigation methods for the diagnosis of diabetes. Nutritional care. Complications related to diabetes – Diabetic cardiovascular disease, retinopathy, neuropathy and nephropathy. Cellular and molecular mechanism of development of diabetes- Management of Type I and Type II diabetes, drugs for the treatment of diabetes.
Π	Biology of cancer: Overview of hallmarks of cancer. Tumorigenesis, Tumor progression and mechanism of Metastasis. Proto-oncogene to oncogene. Oncogene- myc and src family. Tumor suppressor gene-Rb and p53 pathway in cancer. Diagnosis- Non-invasive imaging techniques, Tumor diagnosis, Interventional radiology, New imaging technique, Molecular techniques in cancer diagnosis - treatment of cancer- surgery,

	radiotherapy, chemotherapy, hormonal treatment, and biological therapy.
	Introduction to personalized medicine.
III	Brain- neuronal network- memory- Neurogenerative diseases- Parkinson
	and Alzheimer Disease- molecular understanding of the
	neurodegenerative diseases- treatment modalities.
IV	Acute and chronic renal failure, glomerular diseases-
	glomerulonephritis, nephritic syndrome, diabetes insipidus, diagnosis of
	kidney disease.
V	Introduction to cardiovascular diseases, Lipids and lipoproteins in
	coronary heart disease-cardiac enzymes, Molecular changes during
	cardiac remodeling – hypertrophy of hearts – heart failure- treatment
	modalities.
Reading List	1. The Biochemical basis of disease:2018, Barr AJ ; Portland Press
(Print and Online)	
	2. Biochemical Basis of Diseases
	3. https://www.biologydiscussion.com/diseases-2/biochemical-basis-
	of-diseases/44276
December de d	
Recommended	
Texts	1. Wills' Biochemical Basis of Medicine: 2 nd edition, Thomas H,
	Gillham B;Elsevier
	2. Molecular Biochemistry of Human Diseases, 2021, Feuer G, de la
	Iglesia F; CRC Press

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	S	S	S	М	М	S	S	S	S	S
CO 2	S	Μ	S	L	Μ	Μ	Μ	Μ	Μ	S
CO 3	S	S	Μ	L	S	S	Μ	Μ	S	Μ
CO 4	S	Μ	Μ	Μ	Μ	Μ	S	S	Μ	S
CO 5	S	S	Μ	Μ	S	Μ	Μ	Μ	S	S

S-Strong M-Medium L-Low

Course	ELECTIVE	L	Т	Р	С
Code	PAPER				

		BIOPLASTICS	2	2		3
Cognitive	K1:Recall K2	:Understand K3:Apply			<u> </u>	
Level		11 2				
Learning	To lear	n the properties of Bioplastics and Biodegradation.				
objective	To kno	w about a medical and dental devices				
	To gair	h knowledge on types of Biomaterials				
Unit-I	Biopolymers		12	hou	irs	
Types of Biopl	astics (starch ba	ased, cellulose based plastics, Aliphatic Polyesters -	- (PI	LA,	PH	B)
Polyamides, bio	o-based composi	tes from soyabean oil and chicken feathers, bioderive	d po	lyet	hyle	ene
and genetically	modified biopla	stics. Environmental impact such as Bioplastics and b	viode	grad	latio	on
	I					
Unit-II	Bioplastics	and Biocomposites processing and their	r 12	hou	irs	
	applications					
Bioplastics and	d Biocomposite	s. Processing of Bioplastics and Biocomposites. A	Appli	cati	ons	0
Bioplastics and	Biocomposite	s-Civil Engineering, Biomedical and Auto motiv	ve aj	ppli	catio	on
Measuring of	Biodegradation	of polymer- Enzyme assays, Platetest, Respirator	y tes	st, P	latu	ra
environment an	d Field trial, Ga	sevolution test (CO2 and CH4). Host tissue reaction				
	Diamataniala	in Medical and Dantal devices	10	har		
	Biomaterials	In Medical and Dental devices		ΠΟΙ		
Biomaterials-N	laterial choice i	Implication based on device design. General Biomat	enar		านเ1 ส.ส.	on
dolivery system	ortificial boart	velves hone replacement artificial organs dental an		one	u ur	ug
denvery system	a unicial neart	varves, bone replacement, artificial organs, dental ap	prica	uioi	15.	
Unit-IV	Surface m	odification of Biomaterials for Improved	l 12	hou	irs	
	Functionality	y .				
Enhancement of	of biocompatibi	lity by the use of corona discharge and plasma proc	esses	s, su	rfac	e
coating silver/ s	silver oxide silic	cone, hydro gels, UV curable system, PC coatings he	epari	n lo	adeo	b
systems.						
Unit – V	Characteriza	tion and testing of biomaterials	12	hou	irs	
Bulk analysis	methods applied	I to the study of biomaterials (XRD, FTIR, DSC,	TGA	A) s	urfa	iCe
analysis metho	ds applied to t	he study of biomaterials (SEM, AFM) Mechanica	ıl tes	st -	We	ar
Friction, Flexib	ility, Fatigue. A	pplication and manufacture of Bioplastics. Use of B	ioma	ateri	als t	fo
manufacture of	plastic films, v	arious types of films and application, Usage of Biol	ogica	al fr	ienc	lly
plastics in Hom	es, Industry.					
Text Books						
1. Srikanthpill Scrivener Pu	a, Hand Book of Iblishing LLC, 2	f Bioplastics and Bio composition Engineering Appl 2011.	icatio	ons,		
2. Syed Ali As	hter, Introductio	on to Bioplastics Engineering, Publisher Elsevier, 20	16.			
3. Publisher: W	Viley-Scrivener					
4. SrikanthPill	a, Handbook of	Bioplastics & Biocomposites, Engineering Applica	tions	,Puł	olisł	1e
Wiley-Scriv	ener, 2011					
References						
1. Michael Thi	elen, Bioplastic	s: Basics and Applications, Polymedia Publisher Gm	bH,	201	2.	
2. Stephan Kal	basei, Bio-based	plastics: Materials and applications, Publisher Wile	y,201	13.		

- 3. Robert Murray-Smith. Bioplastics: A Home Inventors Handbook, Publisher: Robert Murray-Smith, 2014.
- SrikanthPilla, Handbook of Bioplastics and Biocomposites Engineering Applications, John Wiley & Sons, 2011

E-References link

- 1. .https://www.vedantu.com/chemistry/biopolymers
- 2. https://www.activesustainability.com/environment/what-are-bioplastics/
- 3. https://matmatch.com/learn/material/biopolymers
- 4. https://www.researchgate.net/publication/332538701_BiopolymersDefinition_Classification __and_Applications
- 5. https://ijpsr.com/bft-article/new-advancements-of-bioplastics-in-medical-applications/?view=fulltext
- 6. https://royalsocietypublishing.org/doi/10.1098/rsfs.2012.0003
- 7. https://www.sciencedirect.com/topics/materials-science/biomaterials
 - characterization

Course Outcome

CO	Course Outcomes	Knowledge Level
CO1	understand the types of bioplastics and their Impacts on environment	K1, K2
CO2	illustrate the applications of bioplastics, biocomposites	K1, K2, K3
CO3	attain knowledge about Biomaterials in Medical and Dental applications.	K1, K2
CO4	understand about Surface modification of biomaterials for enhancement of biocompatibility	K1, K2
CO5	know about the characterization method of biomaterials	K1, K2, K3

STED

Mapping of COs with POs & PSOs:

	РО				1		VIL		PSC)			
со	1	2	3	4	5	6	7	8	1	2	3	4	5
CO1	S	М	S	S	S	S	S	S	S	S	S	Μ	S
CO2	S	S	S	S	S	Μ	S	S	S	S	S	S	S
CO3	S	S	S	S	Μ	S	S	S	S	S	S	S	М
CO4	S	М	S	S	S	S	S	S	S	S	S	S	S
CO5	Μ	S	S	S	S	S	S	Μ	S	S	М	S	S
Strong	ly Corr	elating	(S)	- 3 m	arks;	Mode	erately	Correla	ting	(M)	- 2 1	narks	
Weakly	y Corre	lating	(W)	- 1 m	ark;	No C	orrelati	ion		(N)	- 0 1	mark	

		Skii Einancement Course -I((WIE)				
Course Code	P23BCS21	DHVTOCHEMISTDV	L	Т	Р	С
		PHIIOCHEMISIKI	2	2	-	2
Cognitive	K1: Recall		1			
Level	K2: Understar	ıd				
	K4: Apply					
Learning	• To lea	arn the effective procedures in extraction and purification of	bio	bac	tiv	e
Objective	comp	ounds				
Ŭ	• To ur	derstand the structural analysis of bioactive compounds				
	• To ga	in knowledge on herbal medicine and phyto pharmaceutica	ls			
Unit 1	Extraction M	ethods				
Polar and Nor	n-polar solvent	s for extraction. Extraction – purification of bio-active compo	oun	ds '	fro	m
plants - cold &	hot extract. S	Soxhlet extraction - crude extracts purification by various sol	lvei	nts.		
r						
I Init II	Bioactive Cou	nnounds				
Isolation of 1	bioactive com	nounds- chromatographic techniques - thin layer chromat	togi	ran	hv-	
liquid chroma	tography - HP	LC and UPLC.	.051	ap	пy	
Unit III	Structural an	alysis of bioactive compounds				
IR spectrosc	opy - Mass spe	ectroscopy – NMR spectroscopy.				
Unit IV	Herbal medic	ine				
History of he	rbal medicine	- different types of herbal medicine - Ayurveda, Siddha and	d U	na	ni -	
Pharmacologi	cal action - cli	nical research and traditional uses of Indian medicinal pl	ant	s -		
Eclipta alba, (Gymnema sylve	estre, Ocimum sanctum, Curcuma longa.				
Unit V	Phytopharn	naceuticals				
Phytopharmac	euticals and the	eir health benefits - anthocyanins, carotenoids, lycopene,				
isoflavones, p	olyphenols, on	nega 3 - fatty acids, biological effects of resveratrol.				
Text Books	1. Shah	B. Pharmacognosy and Phytochemistry, Publisher CBS,201	9.			
	2. Vaibł	nav Darvhekar Rageeb, Lodhi, Vadnere, A Textbook of				
	Pharm	nacognosy & Phytochemistry, Publisher Everest Publishing				
	House	e,2019				
	3. Deep	Panhekar, Ms. Trupti P. Sawant, D. P. Gogle, Phytochemica	als	-		
	Extra	ction, Separation & Analysis, Publisher Global Education				
	Limit	ed,2019				
References	1. Padm	ini Shukla, Dr. Shashi Alok, Dr. Prabodh Shukla, Pharmaco	ogno	osy	r	
	and P	hytochemistry, Publisher Nirali Prakashan, 2019.				
	2. Kausa	ar Jabeen, Pharmacognosy and Phytochemistry – II, Publishe	er:	SIA	4	
	Publi	shers & Distributors Pvt Ltd,2020.				
	3. Sapna	a Malviya, Swati Rawat, Pharmacognosy and Phytoch	emi	istr	y,	
	Publi	sher : Oxford and IBH Publishers,2020.				

Skill Enhancement Course -I(NME)

E-	1. https://www.pdfdrive.com/textbook-of-pharmacognosy-and-
Reference	phytochemistry-d184620437.html
links	2. https://books.google.co.in/books?id=satDwAAQBAJ&printsec=frontcover
	&source=gbs_ge_summary_r&cad=0
	3. https://www.pdfdrive.com/trease-and-evans-pharmacognosy-
	e58233029.html

Course Outcomes

Upon	completion of this course the students will be able to	
CO1	know the extraction and purification of bioactive compounds	K2
CO2	understand the principles of various chromatographic techniques	K2
CO3	acquire knowledge on the structural analysis of bioactive compounds using spectroscopy	K2
CO4	compare the medicinal properties of important medicinal plants	K4
CO5	know the importance and health benefits of phytopharmaceuticals	K1

Mapping of COs with POs & PSOs:

CO		РО								PSO				
	1	2	3	4	5	6	7	8	1	2	3	4	5	
CO1	S	S	S	S	М	S	Μ	S	S	S	S	S	М	
CO2	S	S	S	S	М	S	Μ	S	S	S	S	S	S	
CO3	S	S	S	S	S	S	Μ	S	S	S	S	S	S	
CO4	S	S	Μ	M	Man	S	Mo	S	S	М	S	М	М	
CO5	S	S	М	M	M	M	M	S	S	Μ	S	М	S	

Strongly Correlating (S) Weakly Correlating (W) - 3 marks; Moder

Moderately Correlating

(M) - 2 marks (N) - 0 mark

